First we try the datasheet conditions, with the added 100 M for leakage measurement.

Leakage test:
ADG444 source leakage test @ VS=+/-15V

Mkr	Trace	X-Axis	Value	Notes
1∇	Source	480.0000 ms	-232.81 uV	Opamp offset
$2-1 \nabla$	Source	512.0000 ms	135.78 uV	Switch leakage $=1.36 \mathrm{pA}$

The 1.36 pA leakage is OK .

Then we check the injected charge:
Untrimmed source charge test (D grounded) @ VS=+/- 15V

Mkr	Trace	X-Axis	Value	Notes
1∇	S voltage	0.0200 ms	-259.06 uV	Opamp offset
2∇	IN3	0.0010 ms	50.00 mV	SW closed
3∇	IN3	0.5040 ms	3.05 V	SW open
$4-1 \nabla$	S voltage	0.5800 ms	-1.53 mV	Qinj $=1.5 \mathrm{pC}$
5∇	Trimmed	0.4800 ms	-260.34 uV	
$6-5 \nabla$	Trimmed	0.5200 ms	1.13 uV	Trimmed Qinj $=1.1 \mathrm{fC}$

The red curve gives about 1.5 pC charge, for the untrimmed $+/-15 \mathrm{~V}$ supplies.
The blue curve shows the (roughly) trimmed case on the same scale for comparison. The black curve is the switch driving signal (low = switch ON / High = switch OFF).

The untrimmed 1.5 pC is OK .

Now we trim the power supplies $(+15 \mathrm{~V}$ here, while VS- is still $-15 \mathrm{~V})$ so as to null the injected charge and we zoom.

Mkr	Trace	X-Axis	Value	Notes
2∇	IN3	0.0010 ms	50.00 mV	SW closed
3∇	IN3	0.5040 ms	3.05 V	SW open
5∇	Avg_Filtered	0.4800 ms	-260.52 uV	
$6-5 \nabla$	Avg_Filtered	0.5200 ms	1.31 uV	Trimmed Qinj $=1.1 \mathrm{fC}$
7∇	Avg_Filtered	0.7000 ms	-256.52 uV	I leak integration

The red curve is a 4096 average. The blue is a filtered (smoothed) version of the red curve.
We can see about $1.1 \mathrm{fC} \mathrm{Q}_{\text {inj }}$. This can easily be trimmed further (about $1 \mathrm{fC} / \mathrm{mV}$ supply) but the 5 mV step of my PSU wire wound pot don't allow this.
The rising slope of the second half is the operational amplifier + switch leakage current integration into the 1 nF capacitor.

The trimmed 1 fC is excellent.

Until now all is good,... but I had a gut feel and tried this:

... and the result is more than disappointing (note the 1 s time scale):
D+S charge test (slow) @ VS=+/- 15V

Mkr	Trace	X-Axis	Value	Notes
1∇	D+S voltage	1.0000 ms	-231.95 mV	232 pC. Huhhh !!!
2∇	IN3	1.0000 ms	250.00 mV	SW closed
3∇	IN3	504.0000 ms	3.05 V	SW open

now we have a 232 pC injected charge. Not bad for a 1 pC typ/6 WC switch and absolutely useless for me.

Now, the same conditions with a fast ON/OFF cycle makes this even worse, if possible:
D+S charge test (fast) @ VS=+/-15V

Mkr	Trace	X-Axis	Value	Notes
1∇	D+S voltage	0.0210 ms	-233.00 mV	$232 \mathrm{pC}$. Huhhh !!!
2∇	IN3	0.0020 ms	250.00 mV	SW closed
3∇	IN3	0.5030 ms	3.05 V	SW open
$4-1 \nabla$	D+S voltage	0.4970 ms	-6.70 mV	Even more charge: 7 pC

Here we see the charge isn't, even partly, recovered when switching back to the initial position, but rather another 7 pC charge is injected.

Do all the AD low charge switches behave like that one?

